ENVIRONMENTAL PRODUCT DECLARATION

NP Ultra door handles

In accordance with: ISO 14025:2006, EN

15804:2012+A2:2019/AC:2021

Products included in the EPD:

items 03992, 03991, 03895, 0399301, 03995, 05044, 05245, 05246

An EPD may be updated or depublished if conditions change. To find the latest version of the EPD and to confirm its validity, see www.environdec.com

EPD of multiple products based on a representative product

EPD Owner

GIESSE S.p.A.

Programme

International EPD System www.environdec.com

Programme operator

EPD International AB

Registration number

EPD-IES-0025084:003

Version date

2025-11-03

Validity date

2030-11-02

GENERAL INFORMATION

Programme information

Programme	International EPD System
Address	EPD International AB Box 210 60 SE-100 31 Stockholm Sweden
Website	www.environdec.com
E-mail	support@environdec.com

Product category rules

CEN standard EN 15804 serves as the Core Product Category Rules (PCR)			
Product Category Rules (PCR)	PCR 2019:14 Construction products (EN 15804+A2) (2.0.1)		
PCR review was conducted by	The Technical Committee of the International EPD System. See www.environdec.com for a list of members.		
	Review chair: Rob Rouwette (chair), Noa Meron (co-chair). The review panel may be contacted via the Secretariat www.environdec.com/support.		
Complementary Product Category Rules (c-PCR)	PCR 2019:14-c-PCR-007 Being updated - Windows and doors (EN 17213) (c-PCR to PCR 2019:14) (1.0.0)		
c-PCR review was conducted by	The Technical Committee of the International EPD System		

Verification

LCA accountability	Valerio Venturi, valerio.venturi@schlegelgiesse.com, GIESSE S.p.A.		
Independent third-party verification of the declaration and data, according to ISO 14025:2006, via	 ☑ EPD verification through an individual EPD verification ☐ EPD verification through EPD Process Certification* ☐ EPD verification through a fully pre-verified tool 		
Third-party verifier	Michela Gallo (University of Genoa)		
Approved by	International EPD System		
Procedure for follow-up of data during EPD validity involves third party verifier	☐ Yes ☑ No		
	ccredited certification body certifying and periodically auditing the EPD process and conducting EPDs that are regularly published. More information can be found in the General Programme ernational EPD System.		

Ownership and limitations on use of EPD

Limitations

EPDs within the same product category but published in different EPD programmes, may not be comparable. For two EPDs to be comparable, they shall be based on the same PCR (including the same first-digit version number) or be based on fully aligned PCRs or versions of PCRs; cover products with identical functions, technical performances and use (e.g. identical declared/functional units); have identical scope in terms of included lifecycle stages (unless the excluded life-cycle stage is demonstrated to be insignificant); apply identical impact assessment methods (including the same version of characterisation factors); and be valid at the time of comparison.

Ownership

The EPD Owner has the sole ownership, liability, and responsibility for the EPD.

INFORMATION ABOUT EPD OWNER

EPD Owner	GIESSE S.p.A.
Contact person name	Valerio Venturi
Contact person e-mail	valerio.venturi@quanex.com
Organisation address	Italy Budrio (Bologna) 40054 Via Tubertini 1

Description of the organisation of the EPD Owner

GIESSE S.p.A. founded in 1965, in the province of Bologna, is specialized in the production of manual accessories for aluminum windows and doors. In 2016 it was acquired by Schlegel, a leading British company in the sealing systems sector. Both companies were part of the international division of Tyman PLC, a group listed on the London Stock Exchange, with a commercial network capable of reaching customers in over 100 countries and offering them the highest degree of satisfaction, a wide range of standard components and boasts over 150 patents filed.

In 2024, the entire Tyman group and its brands, including Giesse, were acquired by the American multinational Quanex, forming a new major group in the sector, with a turnover of over 2 billion.

Quanex Building Products Corporation, listed on the NY Stock Exchange, is a manufacturing group that offers building product solutions that include hardware solutions (door/window hardware, screens), extruded solutions (spacers, vinyl profiles for doors and windows, gaskets and sealing systems) and custom solutions (solutions for the wood, mixed and building access industries.

PRODUCT INFORMATION

Product description N U T a T	tem codes 03992, 03991, 03895, 0399301, 03995, 05044, 05245, 05246 in all different inishes: painted, trend BE or raw to be painted by customer NP ULTRA is an ambidextrous door handle without the traditional fixing base in line with the NP Ultra concept. The entire handle mechanism is pre-assembled inside the handle, fixed to the panel without the hid of grub screws so there is no visible hole. The internal mechanism is equipped with a spring to ensure the correct return of the handle to
U T a T	Ultra concept. The entire handle mechanism is pre-assembled inside the handle, fixed to the panel without the aid of grub screws so there is no visible hole.
 а Т	aid of grub screws so there is no visible hole.
Т	-
P	position over time.
	The handle is fixed to the profile with a quick coupling/release system (Giesse patented) using the device supplied.
	The profile can be machined using the specific drilling template, which can be adapted to all profile types.
N	NP Ultra handles are designed to be painted independently without the aid of special equipment. Reversible, right and left hand
	50° opening angle (both directions) for compatibility with all locks on the market
	Compatible with the Giesse perimeter lock, ideal for balcony doors
	Available in double handle version
	Installation on profiles up to 82 mm with the supplied switchboard
	Handle and packaging customizable with customer logo
F	Finishes:
•	Base Painting (allows the customer to paint the product as if it were a raw product),
•	Powder coatings
•	TREND BE finishes
Technical purpose of product D	Door handle
Manufacturing or service provision c	chemical treatment , painting, pad printing of the lever handle
description	ssembly of lever handle and other components
p	packaging
Material properties V	/olumetric mass density: 4957 kg/m ³
	Mass per piece: 0.487 kg/piece
Manufacturing site B	Budrio
	taly
	Budrio (Bologna)
	10054
V	/ia Tubertini 1
UN CPC code 4	12992. Padlocks and locks, of base metal; clasps and frames with clasps, incorporating locks, of
b	pase metal; keys and parts thereof, of base metal; base metal fittings for furniture, doors, addlery and the like
Geographical scope(s)	Global
Actual or technical lifespan 3	30 year(s)

PRODUCT IMAGES

CONTENT DECLARATION

Content declaration of multiple products	content declaration refers to the representative product
Hazardous and toxic substances	The product does not contain any substances from the SVHC candidate list in concentrations exceeding 0.1% of its weight.

PRODUCT CONTENT				
Content name	Mass, kg	Post-consumer recycled material, mass-% of product	Biogenic material, mass-% of product	Biogenic material ¹ , kg C/declared unit
Aluminium alloy	0.24			
Zinc alloy	0.15			
Steel and polymers	0.09			
Total	0.48	0	0	0
Note 1	1 kg bioge	1 kg biogenic carbon is equivalent to 44/12 kg of CO ₂		

PACKAGING MATERIALS				
Material name	Mass, kg	Mass-% (versus the product)	Biogenic material ¹ , kg C/declared unit	
Cardboard	0.02	4.1	0.01	
Wood	0.02	3.4		
Plastic	0.01	2		
Total	0.05	9.5	0.01	
Note 1	1 kg biogenic	1 kg biogenic carbon is equivalent to 44/12 kg of CO ₂		

LCA INFORMATION

EPD based on declared or functional unit	Declared unit
Declared unit and reference flow	Handle Mass: 1 kg
Conversion factor to mass	1
Are infrastructure or capital goods included in any upstream, core or downstream processes?	☐ Yes ☑ No
Data sources used for this EPD	ecoinvent database (general) ecoinvent 3.9.1 database
LCA Software	SimaPro 9.5
Additional information about the underlying LCA-based information	Cut-off rules 5% cut -off rule was applied, specifically, regarding maintenance materials and related waste. Exclusions: Transports of the employees Replacement parts for machinery used during maintenance, Allocation procedure: All allocations were made considering either total mass production or the mass of products referred to specific processes (e.g. painting, surface pretreatment, pad printing). This procedure was applied to allocate energy consumption (electrical and thermal), packaging, emissions, auxiliary materials, and waste. Electricity used in the manufacturing process in A3 modelled 100% from renewable source as per certificate of origin.
Version of the EN 15804 reference package	EF Reference Package 3.1
Characterisation methods	EN 15804 + A2. Version EF 3.1 July 2022
Technology description including background system	Reversible door handle without fixing base. The product considered consists mainly of die-cast aluminium and zinc alloy.
Scrap (recycled material) inputs contribution level	Less than 10% of the GWP-GHG results in modules A1-A3 come from scrap inputs

Data quality assessment

Description of data quality assessment	Data quality is compliant with ISO 14025:2006, and assessed as per EN15941.
and reference years	All primary data were collected for 2024, there is not data with poor quality.

DATA QUALITY AS	SSESSMENT				
Process name	Source type	Source	Reference year	Data category	Share of primary data, of GWP-GHG results for A1-A3
Manufacturing of product	Data collection	EPD Owner	2024	Primary data	80%
Thermal energy	Database	Ecoinvent	<5years	Primary data	13%
Total share of prin	Total share of primary data, of GWP-GHG results for A1-A3 93%				
Note The share of primary data is calculated based on GWP-GHG results. It is a simplified indicator for data quality that supports the use of more primary data to increase the representativeness of and comparability between EPDs. Note that the indicator does not capture all relevant aspects of data quality and is not comparable across product categories.					

Comment on the data sources and other	Data refer to item code # 03992 in raw finish to be painted by customer
information in the table	

ELECTRICITY USED IN THE MANUFACTURING PROCESS IN A3 (A5 FOR SERVICES)						
Type of electricity mix	Specific electricity mix as generated, or purchased from an electricity supplier, demonstrated by a contractual instrument					
Energy sources	Hydro	0%				
	Wind	0%				
	Solar	100%				
	Biomass	0%				
	Geothermal	0%				
	Waste	0%				
	Nuclear	0%				
	Natural gas	0%				
	Coal	0%				
	Oil	0%				
	Peat	0%				
	Other	0%				

Climate impact (GWP-GHG): 0.08 kg CO₂ eq./kWh

SYSTEM BOUNDARY

Description of the System boundary b) Cradle to gate with options, modules C1-C4, module D and with optional modules (A1-A3 + C + D and additional modules)		
Excluded modules	Yes, there is an excluded module, or there are excluded modules	
Justification for omission of modules	Modules of use stage excluded as optional	

	Product stage			onstruction Use stage			End of life stage			Beyond product life cycle							
	Raw material supply	Transport	Manufacturing	Transport to site	Construction installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse- Recovery- Recycling- potential
Module	A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
Modules declared	Х	Х	X	X	Х	ND	ND	ND	ND	ND	ND	ND	X	X	X	X	X
Geography	Global	Europe	Europe	Europe	Europe	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Global	Global	Global	Global	Europe
Share of specific data		93%		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Variation - products		45%		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Variation - sites		0%		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Disclaimer	The sha	The share of specific/primary data and both variations (products and sites) refer to GWP-GHG results only.															

Process flow diagram(s) related images

_
0
Ξ
a
F
Ξ
0
F
=
=
Ë
assessmen
=
SS
S
×
ú
a
ž
Ξ
0
3
_
0
ž
O
5
=
S
2
0
0

Mar	ufacturing proces st	age	
A1	A2	A3	
Raw material supply	Transport (transport of semifinished material and components)	Manufacturing	
auminium zinc alloy steel polymers		painting of handle pad printing of hand	and other components

Construction process stage					
A4	A5				
Markey Barrey	Construction				
Transport	installation (waste				
(trasnporto to the	management of				
costruction site)	packaging				
	matgerials)				

			Use stage			
B1	B2	В3	B4	B5	B6	B7
Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use

End of life stage							
C1	C2	C3	C4				
De-construction demolition (deconstruction, dismantling ore demolition of buillding including handles)	Transport (transprot of construction wastes to waste processing site and disposal)	Waste processing (collection waste for recovery, including handle parts)	Disposal (waste for landfill including handle parts				

supplementary information beyond construction works lifecycle

Benefits and loads beyond the system boundaries					
D					
Reuse-Recovery-					
Recycling-potential					
(reuse of materials					
destined for					
recycling in C3)					

declared module
not declared module

DEFAULT SCENARIO

Name of the default scenario	Standard
Description of the default scenario	Scenario considers the transport of the handle to the building site and the installation in the door

Module A4: Transport to the building site

Explanatory name of the default scenario in module A4	Transport to building
Description of the default scenario in module A4	Given the variability of product sales and consequently at the construction site in various regions of the world, it was decided to adopt the provisions of EN 17610:2022 adapting the capacity utilization

Module A4 information	Value	Unit
Capacity utilization (including empty returns)	56	%
Distance to the construction site	3500	km

Module A5: Installation in the building

Explanatory name of the default scenario in module A5	Installation
Description of the default scenario in module A5	Since this is a manual process, no energy or fuels is needed for installation, then module analyses the recovery of packaging incurred as waste during product installation. Data sourced from Eurostat Packaging waste by waste management operations, 2022

Module A5 information	Value	Unit
Wood waste to landfill	36	%
Wood waste to energy recovery	30	%
Wood waste to recycle	34	%
Plastic waste to landfill	24	%
Plastic waste to energy recovery	35	%
Plastic waste to recycle	41	%
Cardboard waste to landfill	7	%
Cardboard to energy recovery	10	%
Cardboard to recycle	83	%

Reference service life

Description of the default scenario in reference service	According to EN 17610:2022
life	

Reference service life information	Value	Unit
Reference service life	30	year(s)

Module C: End-of-life

Explanatory name of the default scenario in module C	Deinstallation
Description of the default scenario in module C	The demolition phase of the building site includes all deconstruction operations, including the initial dismantling and sorting on site of the handle. In the absence of primary data relating to the waste transport to the treatment plant, default data for modelling module were assumed according to relevant PCR 2019:14 2.0.1. A recycle ratio of 90% of metal parts of handle and 75% of plastic parts of handle are considered. Remaining 10% of metal is landfilled, 20% of plastic is recovered and 5% of plastic is landfilled

Module C information	Value	Unit
Recycle, metal	90	%
Recycle, plastic	75	%
Disposal, metal	10	%
Disposal, plastic	5	%
Recovery, plastic	20	km
Transportation distance to the closest disposal area	80	km
Means of transport	16-32 tonne lorry (EURO 5), 50% load factor	N/A

Module D: Beyond product life cycle

Explanatory name of the default scenario in module D	Benefit
Description of the default scenario in module D	This stage, according to the EN 15804:2012 + A2:2019 standard for the analysis "from cradle to gate, with modules C1-C4 and module D", considers the benefit due to the reuse/recovery of materials. In this stage, the reuse of materials for recycling in stage C3 was considered.

ADDITIONAL SCENARIO 1

Name of the additional scenario	100% recycling
Description of the additional scenario	Scenario considers 100% of recycling at the end of life. Best-case for EoL scenario.

Module A4: Transport to the building site

|--|

Module A5: Installation in the building

|--|

Reference service life

Description of the additional scenario in reference service life	According to EN 17610:2022
--	----------------------------

Reference service life information	Value	Unit
Reference service life	30	year(s)

Module C: End-of-life

Description of the additional scenario in module C

The demolition phase of the building site includes all deconstruction operations, including the initial dismantling and sorting on site of the handle.

In the absence of primary data relating to the waste transport to the treatment plant, default data for modelling module were assumed according to relevant PCR 2019:14 2.0.1.

A recycle ratio of 100% is considered for all parts of handle

Module C information	Value	Unit
Recycle, metal	100	%
Recycle, plastic	100	%
Transportation distance to the closest disposal area	80	km
Means of transport	16-32 tonne lorry (EURO 5), 50% load factor	N/A

Module D: Beyond product life cycle

Description of the additional
scenario in module D

This stage, according to the EN 15804:2012 + A2:2019 standard for the analysis "from cradle to gate, with modules C1-C4 and module D" , considers the benefit due to the reuse/recovery of materials. In this stage, the reuse of materials for recycling in stage C3 was considered.

ADDITIONAL SCENARIO 2

Name of the additional scenario	100% landfill
Description of the additional scenario	Scenario considers 100% of landfill at the end of life. This represents a worst-case scenario for end-of-life handling. The material is collected and transported to an inert landfill site without any further treatment

Module A4: Transport to the building site

Description of the additional scenario in module A4	Transport to building
---	-----------------------

Module A5: Installation in the building

Description of the add	itional	Installation
Description of the add	itional	Installation
scenario in module A5		

Reference service life

Description of the additional scenario in reference service life	According to EN 17610:2022
lite	

Reference service life information	Value	Unit	
Reference service life	30	year(s)	

Module C: End-of-life

Description of the additional scenario in module C

The demolition phase of the building site includes all deconstruction operations, including the initial dismantling and sorting on site of the handle.

In the absence of primary data relating to the waste transport to the treatment plant, default data for modelling module were assumed according to relevant PCR 2019:14 2.0.1.

A ratio of 100% to landfill is considered for all parts of handle.

Module C information	Value	Unit
Landfill, metal	100	%
Landfill, plastic	100	%
Transportation distance to the closest disposal area	80	km
Means of transport	16-32 tonne lorry (EURO 5), 50% load factor	N/A

Module D: Beyond product life cycle

Description of the additional
scenario in module D

This stage, according to the EN 15804:2012 + A2:2019 standard for the analysis "from cradle to gate, with modules C1-C4 and module D", considers the benefit due to the reuse/recovery of materials. So in this scenario, the reuse of materials for recycling in stage C3 was not considered.

ENVIRONMENTAL PERFORMANCE

The estimated impact results are only relative statements, which do not indicate the endpoints of the impact categories, exceeding threshold values, safety margins and/or risks.

Mandatory environmental performance indicators according to EN 15804

Impact category	Indicator	Unit	A1-A3	A4	A5	B1	B2	В3	В4	B5	В6	В7	C1	C2	С3	C4	D
Climate change - total	GWP-total	kg CO ₂ eq.	1.11E+1	7.28E-1	2.29E-2	ND	ND	ND	ND	ND	ND	ND	0.00E+0	1.51E-2	7.35E-3	3.94E-3	-5.44E+0
Climate change - fossil	GWP-fossil	kg CO ₂ eq.	1.24E-1	2.10E-4	6.78E-3	ND	ND	ND	ND	ND	ND	ND	0.00E+0	4.34E-6	5.19E-8	9.59E-6	-2.22E-2
Climate change - biogenic	GWP-biogenic	kg CO ₂ eq.	8.70E-2	3.53E-4	4.04E-7	ND	ND	ND	ND	ND	ND	ND	0.00E+0	7.31E-6	2.10E-8	4.15E-6	-1.47E-1
Climate change - land use and land-use change	GWP-luluc	kg CO ₂ eq.	1.13E+1	7.29E-1	2.96E-2	ND	ND	ND	ND	ND	ND	ND	0.00E+0	1.51E-2	7.35E-3	3.95E-3	-5.61E+0
Ozone depletion	ODP	kg CFC-11 eq.	2.69E-7	1.58E-8	1.84E-11	ND	ND	ND	ND	ND	ND	ND	0.00E+0	3.28E- 10	1.88E-12	4.47E- 11	-1.72E-7
Acidification	AP	mol H ⁺ eq.	8.13E-2	2.37E-3	7.82E-6	ND	ND	ND	ND	ND	ND	ND	0.00E+0	4.91E-5	9.55E-7	2.47E-5	-3.62E-2
Eutrophication aquatic freshwater	EP-freshwater	kg P eq.	5.87E-4	5.82E-6	1.24E-8	ND	ND	ND	ND	ND	ND	ND	0.00E+0	1.21E-7	9.66E- 10	1.26E-7	-3.09E-4
Eutrophication aquatic marine	EP-marine	kg N eq.	1.19E-2	8.07E-4	1.04E-5	ND	ND	ND	ND	ND	ND	ND	0.00E+0	1.67E-5	4.55E-7	6.27E-6	-3.94E-3
Eutrophication terrestrial	EP-terrestrial	mol N eq.	1.22E-1	8.62E-3	3.49E-5	ND	ND	ND	ND	ND	ND	ND	0.00E+0	1.78E-4	4.93E-6	6.85E-5	-4.28E-2
Photochemical ozone formation	POCP	kg NMVOC eq.	4.34E-2	3.55E-3	1.21E-5	ND	ND	ND	ND	ND	ND	ND	0.00E+0	7.34E-5	1.23E-6	2.27E-5	-1.95E-2
Depletion of abiotic resources - minerals and metals	ADP- minerals&metals ¹	kg Sb eq.	6.99E-4	2.34E-6	1.62E-9	ND	ND	ND	ND	ND	ND	ND	0.00E+0	4.84E-8	1.53E-10	7.76E-9	6.94E-5
Depletion of abiotic resources - fossil fuels	ADP-fossil ¹	MJ, net calorific value	1.45E+2	1.03E+1	1.00E-2	ND	ND	ND	ND	ND	ND	ND	0.00E+0	2.14E-1	6.95E-4	5.53E-2	-8.67E+1
Water use	WDP ¹	m ³ world eq. deprived	1.29E+0	4.21E-2	2.49E-4	ND	ND	ND	ND	ND	ND	ND	0.00E+0	8.70E-4	2.05E-6	1.43E-3	3.87E-1
Acronyms	AP = Acidification por end compartment; EF	Warming Potential fossil tential, Accumulated Exc -terrestrial = Eutrophica sources potential; WDP	eedance; EP-fr ion potential, A	eshwater = E Accumulated	Eutrophication Exceedance	n potential, ; POCP = Fo	fraction of nu fraction pote	itrients reac ntial of trope	hing freshwa ospheric ozo	ater end con	npartment; E	P-marine = E	utrophication	potential, fra	action of nutr	ients reachir	ng marine
General disclaimer	The results of the end	d-of-life stage (modules	C1-C4) should	be considere	ed when usin	g the result:	of the produ	ıct stage (m	odules A1-A	3/A1-A5 for :	services).						
Disclaimer 1	The results of this en	vironmental impact indic	ator shall be us	sed with care	as the uncer	tainties of t	hese results	are high or a	s there is lin	nited experie	ence with the	indicator					

Additional mandatory environmental performance indicators

Impact category	Indicator	Unit	A1-A3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	С3	C4	D
Climate change - GWP-GHG	GWP-GHG ¹	kg CO ₂ eq.	1.12E+1	7.24E-1	2.99E-2	ND	ND	ND	ND	ND	ND	ND	0.00E+0	1.50E-2	7.34E-3	3.92E-3	-5.56E+0
Acronyms	GWP-GHG = Global wa	GWP-GHG = Global warming potential greenhouse gas.															
General disclaimer	The results of the end-	-of-life stage (modules C	1-C4) should	be consider	ed when usi	ng the result	s of the proc	luct stage (m	nodules A1-A	3/A1-A5 for s	services).						
Disclaimer 1		or is termed GWP-IOBC/dentical to GWP-total exc					accounts for	r all greenho	use gases ex	cept biogen	c carbon dic	xide uptake	and emissions	s and biogen	ic carbon sto	ored in the pro	oduct. As

Additional voluntary environmental performance indicators according to EN 15804

Impact category	Indicator	Unit	A1-A3	A4	A5	B1	B2	В3	В4	B5	В6	В7	C1	C2	C3	C4	D
Particulate matter emissions	PM	Disease incidence	7.23E-7	5.77E-8	7.90E-11	ND	ND	ND	ND	ND	ND	ND	0.00E+0	1.19E-9	5.01E-12	3.81E-10	-4.29E-7
Ionizing radiation - human health	IRP ¹	kBq U235 eq.	4.26E-1	5.17E-3	7.09E-6	ND	ND	ND	ND	ND	ND	ND	0.00E+0	1.07E-4	3.14E-7	9.28E-5	-5.32E-1
Eco-toxicity - freshwater	ETP-fw ²	CTUe	1.83E+2	5.09E+0	3.18E-2	ND	ND	ND	ND	ND	ND	ND	0.00E+0	1.05E-1	1.42E-3	8.17E-1	-2.82E+0
Human toxicity - cancer effects	HTP-c ²	CTUh	2.95E-8	3.31E-10	1.65E-12	ND	ND	ND	ND	ND	ND	ND	0.00E+0	6.84E- 12	2.64E- 13	3.48E- 12	-1.87E-8
Human toxicity - non-cancer effects	HTP-nc ²	CTUh	5.72E-7	7.27E-9	8.08E-11	ND	ND	ND	ND	ND	ND	ND	0.00E+0	1.50E-10	1.12E-11	4.46E-11	-1.49E-7
Land-use related impacts/soil quality	SQP ²	Dimensionless	8.59E+1	6.14E+0	1.38E-2	ND	ND	ND	ND	ND	ND	ND	0.00E+0	1.27E-1	1.95E-4	6.87E-2	-1.51E+0
Acronyms		lence of disease due to pa Potential comparative toxi						iency relative	e to U235; E	TP-fw = Pote	ential compa	rative toxic u	init for ecosys	stems; HTP-c	= Potential	comparative	toxic unit for
General disclaimer	The results of the e	nd-of-life stage (modules	C1-C4) should	d be considere	ed when usin	g the result	s of the prod	uct stage (m	odules A1-A	3/A1-A5 for :	services).						
Disclaimer 1		ry deals mainly with the evisposal in underground fac												accidents, oc	cupational e	xposure nor (due to
Disclaimer 2	The results of this	nvironmental impact indic	ator shall be u	sed with care	as the unce	rtainties of 1	hese results	are high or a	s there is lin	nited experie	ence with the	e indicator.					

Resource use indicators according to EN 15804

Indicator	Unit	A1-A3	A4	A5	B1	B2	В3	В4	B5	В6	B7	C1	C2	С3	C4	D
PERE	MJ, net calorific value	4.09E+1	1.60E-1	2.77E-4	ND	ND	ND	ND	ND	ND	ND	0.00E+0	2.50E-3	1.09E-5	2.50E-3	-3.76E+1
PERM	MJ, net calorific value	1.98E+0	0.00E+0	0.00E+0	ND	ND	ND	ND	ND	ND	ND	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
PERT	MJ, net calorific value	4.29E+1	1.60E-1	2.77E-4	ND	ND	ND	ND	ND	ND	ND	0.00E+0	2.50E-3	1.09E-5	2.50E-3	-3.76E+1
PENRE	MJ, net calorific value	1.45E+2	1.03E+1	1.00E-2	ND	ND	ND	ND	ND	ND	ND	0.00E+0	2.14E-1	6.95E-4	5.53E-2	-8.67E+1
PENRM	MJ, net calorific value	1.07E+0	0.00E+0	0.00E+0	ND	ND	ND	ND	ND	ND	ND	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
PENRT	MJ, net calorific value	1.46E+2	1.03E+1	1.00E-2	ND	ND	ND	ND	ND	ND	ND	0.00E+0	2.14E-1	6.95E-4	5.53E-2	-8.67E+1
SM	kg	0.00E+0	0.00E+0	0.00E+0	ND	ND	ND	ND	ND	ND	ND	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
RSF	MJ, net calorific value	0.00E+0	0.00E+0	0.00E+0	ND	ND	ND	ND	ND	ND	ND	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
NRSF	MJ, net calorific value	0.00E+0	0.00E+0	0.00E+0	ND	ND	ND	ND	ND	ND	ND	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
FW	m ³	1.34E-1	1.47E-3	8.91E-6	ND	ND	ND	ND	ND	ND	ND	0.00E+0	3.04E-5	4.21E-7	4.14E-5	-2.48E-1
Acronyms	PERE = Use of renewable pr resources; PENRE = Use of of non-renewable primary e	non-renewable pi	imary energy e	excluding non-	renewable pr	imary energy	resources u	sed as raw m	naterials; PEN	IRM = Use of	non-renewa	ble primary en	ergy resources	used as raw n		
General disclaimer	The results of the end-of-life	e stage (modules	C1-C4) should	be considered	when using	the results o	f the product	stage (modu	les A1-A3/A1-	-A5 for servic	es).					

Waste indicators according to EN 15804

Indicator	Unit	A1-A3	A4	A5	B1	B2	В3	В4	B5	В6	В7	C1	C2	С3	C4	D
HWD	kg	8.02E-3	6.57E-5	6.57E-8	ND	ND	ND	ND	ND	ND	ND	0.00E+0	1.36E-6	9.37E-9	1.84E-7	6.46E-3
NHWD	kg	2.32E+0	5.04E-1	2.21E-2	ND	ND	ND	ND	ND	ND	ND	0.00E+0	1.04E-2	7.15E-5	1.01E-1	-1.71E+0
RWD	kg	3.05E-4	3.35E-6	4.47E-9	ND	ND	ND	ND	ND	ND	ND	0.00E+0	6.94E-8	2.04E-10	5.89E-8	-4.30E-4
Acronyms	HWD = Hazardous waste dispo	sed; NHWD =	Non-hazardoı	ıs waste disp	osed; RWD =	Radioactive	waste dispo	sed.								
General disclaimer	The results of the end-of-life st	age (modules	C1-C4) should	d be considere	ed when usin	g the results	of the produ	ct stage (mo	dules A1-A3/	'A1-A5 for ser	vices).					

Output flow indicators according to EN 15804

Indicator	Unit	A1-A3	A4	A 5	B1	B2	В3	В4	B5	В6	В7	C1	C2	C3	C4	D
CRU	kg	0.00E+0	0.00E+0	0.00E+0	ND	ND	ND	ND	ND	ND	ND	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
MFR	kg	1.82E-1	0.00E+0	5.42E-2	ND	ND	ND	ND	ND	ND	ND	0.00E+0	0.00E+0	8.98E-1	0.00E+0	0.00E+0
MER	kg	1.82E-1	0.00E+0	2.04E-2	ND	ND	ND	ND	ND	ND	ND	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
EEE	MJ, net calorific value	0.00E+0	0.00E+0	0.00E+0	ND	ND	ND	ND	ND	ND	ND	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
EET	MJ, net calorific value	0.00E+0	0.00E+0	0.00E+0	ND	ND	ND	ND	ND	ND	ND	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
Acronyms	CRU = Components for re-u	se; MFR = Mater	ials for recyclin	ng; MER = Mat	erials for en	ergy recovery	; EEE = Exp	orted electric	al energy; El	ET = Exporte	d thermal en	ergy.				
General disclaimer	The results of the end-of-life	e stage (modules	C1-C4) should	d be considere	d when usir	g the results	of the produ	ct stage (mo	dules A1-A3/	A1-A5 for se	rvices).					

Results for additional scenarios for modules A4-C4

Additional scenario	100% recycling
Description of the scenario/method	Scenario considers 100% of recycling at the end of life

Impact category	Indicator	Unit	A1-A3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	С3	C4	D
Climate change - total	GWP-total	kg CO2 eq.	1.11E+1	7.28E-1	2.29E-2	ND	ND	ND	ND	ND	ND	ND	0.00E+0	1.51E-2	0.00E+0	0.00E+0	-6.05E+0
Climate change - fossil	GWP-fossi	kg CO2 eq.	1.24E-1	2.10E-4	6.78E-3	ND	ND	ND	ND	ND	ND	ND	0.00E+0	4.34E-6	0.00E+0	0.00E+0	-2.46E-2
Climate change - biogenic	GWP-biogenic	kg CO2 eq.	8.70E-2	3.53E-4	4.04E-7	ND	ND	ND	ND	ND	ND	ND	0.00E+0	7.31E-6	0.00E+0	0.00E+0	-1.63E-1
Climate change - land use and land-use change	GWP -luluc	kg CO2 eq.	1.13E+1	7.29E-1	2.96E-2	ND	ND	ND	ND	ND	ND	ND	0.00E+0	1.51E-2	0.00E+0	0.00E+0	-6.24E+0
Ozone depletion	ODP	kg CFC-11 eq.	2.69E-7	1.58E-8	1.84E-11	ND	ND	ND	ND	ND	ND	ND	0.00E+0	3.28E- 10	0.00E+0	0.00E+0	-1.90E-7
Acidification	AP	mol H+ eq.	8.13E-2	2.37E-3	7.82E-6	ND	ND	ND	ND	ND	ND	ND	0.00E+0	4.91E-5	0.00E+0	0.00E+0	-4.02E-2
Eutrophication aquatic freshwater	EP-freshwater	kg P eq.	5.87E-4	5.82E-6	1.24E-8	ND	ND	ND	ND	ND	ND	ND	0.00E+0	1.21E-7	0.00E+0	0.00E+0	-3.43E-4
Eutrophication aquatic marine	EP-marine	kg N eq.	1.19E-2	8.07E-4	1.04E-5	ND	ND	ND	ND	ND	ND	ND	0.00E+0	1.67E-5	0.00E+0	0.00E+0	-4.38E-3
Eutrophication terrestrial	EP-terrestrial	mol N eq.	1.22E-1	8.62E-3	3.49E-5	ND	ND	ND	ND	ND	ND	ND	0.00E+0	1.78E-4	0.00E+0	0.00E+0	-4.76E-2
Photochemical ozone formation	POCP	kg NMVOC eq.	4.34E-2	3.55E-3	1.21E-5	ND	ND	ND	ND	ND	ND	ND	0.00E+0	7.34E-5	0.00E+0	0.00E+0	-2.17E-2
Depletion of abiotic resources - minerals and metals	ADP-minerals& metals	kg Sb eq.	6.99E-4	2.34E-6	1.62E-9	ND	ND	ND	ND	ND	ND	ND	0.00E+0	4.84E-8	0.00E+0	0.00E+0	7.71E-5
Depletion of abiotic resources - fossil fuels	ADP-fossil1	MJ, net calorific value	1.45E+2	1.03E+1	1.00E-2	ND	ND	ND	ND	ND	ND	ND	0.00E+0	2.14E-1	0.00E+0	0.00E+0	-9.70E+1
Water use	WDP	m3 world eq. deprived	1.29E+0	4.21E-2	2.49E- 4	ND	ND	ND	ND	ND	ND	ND	0.00E+0	8.70E-4	0.00E+0	0.00E+0	4.16E-1
Climate change - GWP-GHG	GWP-GHG(2)	kg CO2 eq.	1.12E+1	7.24E-1	2.99E-2	ND	ND	ND	ND	ND	ND	ND	0.00E+0	1.50E-2	0.00E+0	0.00E+0	-6.19E+0
Acronyms																	
Disclaimers		WP-GHG indicator is tern n, the indicator is identica							s for all gree	nhouse gas	es except bi	ogenic carbo	on dioxide up	take and emi	ssions and bi	ogenic carbo	n stored in
General disclaimer	The results of the er	nd-of-life stage (modules	C1-C4) should	be consider	ed when usir	ng the resul	ts of the pro	duct stage (modules A1	-A3/A1-A5 fo	or services).						

Results for additional scenarios for modules A4-C4

Additional scenario

Description of the scenario/method

Scenario considers 100% of landfill at the end of life

Impact category	Indicator	Unit	A1-A3	A4	A5	B1	B2	В3	В4	B5	В6	В7	C1	C2	C3	C4	D
Climate change - total	GWP-total	kg CO2 eq.	1.11E+1	7.28E-1	2.29E-2	ND	ND	ND	ND	ND	ND	ND	0.00E+0	1.51E-2	0.00E+0	4.01E-2	0.00E+0
Climate change - fossil	GWP-fossil	kg CO2 eq.	1.24E-1	2.10E-4	6.78E-3	ND	ND	ND	ND	ND	ND	ND	0.00E+0	7.31E-6	0.00E+0	9.60E-5	0.00E+0
Climate change - biogenic	GWP-biogenic	kg CO2 eq.	8.70E-2	3.53E-4	4.04E-7	ND	ND	ND	ND	ND	ND	ND	0.00E+0	7.31E-6	0.00E+0	4.16E-5	0.00E+0
Climate change - land use and land-use change	GWP-Iuluc	kg CO2 eq.	1.13E+1	7.29E-1	2.96E-2	ND	ND	ND	ND	ND	ND	ND	0.00E+0	1.51E-2	0.00E+0	4.02E-2	0.00E+0
Ozone depletion	ODP	kg CFC-11 eq.	2.69E-7	1.58E-8	1.84E-11	ND	ND	ND	ND	ND	ND	ND	0.00E+0	3.28E- 10	0.00E+0	4.49E- 10	0.00E+0
Acidification	AP	mol H+ eq.	8.13E-2	2.37E-3	7.82E-6	ND	ND	ND	ND	ND	ND	ND	0.00E+0	4.91E-5	0.00E+0	2.48E-4	0.00E+0
Eutrophication aquatic freshwater	EP-freshwater	kg P eq.	5.87E-4	5.82E-6	1.24E-8	ND	ND	ND	ND	ND	ND	ND	0.00E+0	1.21E-7	0.00E+0	1.26E-6	0.00E+0
Eutrophication aquatic marine	EP-marine	kg N eq.	1.19E-2	8.07E-4	1.04E-5	ND	ND	ND	ND	ND	ND	ND	0.00E+0	1.67E-5	0.00E+0	6.38E-5	0.00E+0
Eutrophication terrestrial	EP-terrestrial	mol N eq.	1.22E-1	8.62E-3	3.49E-5	ND	ND	ND	ND	ND	ND	ND	0.00E+0	1.78E-4	0.00E+0	6.87E-4	0.00E+0
Photochemical ozone formation	POCP	kg NMVOC eq.	4.34E-2	3.55E-3	1.21E-5	ND	ND	ND	ND	ND	ND	ND	0.00E+0	7.34E-5	0.00E+0	2.28E-4	0.00E+0
Depletion of abiotic resources - minerals and metals	ADPminerals& metals	kg Sb eq.	6.99E-4	2.34E-6	1.62E-9	ND	ND	ND	ND	ND	ND	ND	0.00E+0	4.84E-8	0.00E+0	7.78E-8	0.00E+0
Depletion of abiotic resources - fossil fuels	ADP-fossil	MJ, net calorific value	1.45E+2	1.03E+1	1.00E-2	ND	ND	ND	ND	ND	ND	ND	0.00E+0	2.14E-1	0.00E+0	5.55E-1	0.00E+0
Water use	WDP	m3 world eq. deprived	1.29E+0	4.21E-2	2.49E-4	ND	ND	ND	ND	ND	ND	ND	0.00E+0	8.70E- 48	0.00E+0	1.44E-2	0.00E+0
Climate change - GWP-GHG	GWP-GHG(2)	kg CO2 eq.	1.12E+1	7.24E-1	2.99E-2	ND	ND	ND	ND	ND	ND	ND	0.00E+0	1.50E-2	0.00E+0	3.99E-2	0.00E+0
Acronyms																	
Disclaimers		GWP-GHG indicator is terr h, the indicator is identica							for all gree	nhouse gase	es except bio	genic carbo	on dioxide upta	ike and emis	sions and bio	genic carbor	stored in
General disclaimer	The results of the e	nd-of-life stage (modules	C1-C4) should	be considere	ed when usir	g the result	s of the pro	duct stage (r	modules A1-	-A3/A1-A5 fc	r services).						

ADDITIONAL ENVIRONMENTAL INFORMATION

Main materials used to build the accessories are recyclable.

- It is recommended that accessories, packaging, etc. are disposed of accordingly, with local

disposal regulations and sent to a recycling unit for recovery and recycling

- Before sent to disposal it's recommended to separate the materials as below:
 - Steel / Stainless Steel: Ferrous metals
 - Aluminium alloy / Zinc alloy: Non-ferrous metals
 - Plastic components (PA, PP, PE, POM, etc): Plastic wastes

The following section shows the variation of each impact indicator compared to the representative product for which the variation is above 10%, results aggregated over all included modules (from A to C)

impact Indicator abbreviation MAX MIN

GWP-fossil 29% -45%

GWP-biogenic 38% -26%

GWP-luluc 23% -77%

GWP-total 29% -45%

ODP 44% -46%

AP 15% -22%

EP-freshwater 21% -12%

EP-marine 25% -21%

EP-terrestrial 16% -17%

POCP 19% -27%

ADPE 134% -14%

ADPF 30% -39%

WDP 69% -148%

GWP-GHG 29% -45%

INFORMATION RELATED TO EPDS OF MULTIPLE PRODUCTS

Justification for why this is representative product # 03992 NP Ultra handle 005 (base painting) due to its highest annual production volume in the reference year.

ABBREVIATIONS

Global warming potential - fossil fuels (GWP-fossil)

Global warming potential - biogenic (GWP-biogenic)

Global warming potential - land use and land use change (GWP-luluc)

Global warming potential - total (GWP-total)

Depletion potential of the stratospheric ozone layer (ODP)

Acidification potential, accumulated exceedance (AP)

Eutrophication potential - freshwater (EP-freshwater)

Eutrophication potential - marine (EP-marine)

Eutrophication potential - terrestrial (EP-terrestrial)

Photochemical ozone creation potential (POCP)

Abiotic depletion potential - non-fossil resources (ADPE)

Abiotic depletion potential - fossil resources (ADPF)

Water (user) deprivation potential (WDP)

Global warming potential (GWP-GHG)

REFERENCES

- [1] UNI EN ISO 14040: 2021, Management environmental Assessment of the life cycle Principles and frame of reference.
- [2] UNI EN ISO 14044: 2021, Management environmental Evaluation of the life cycle– Requirements And guidelines .
- [3] UNI EN ISO 14025:2010, Environmental labels and declarations Type III environmental declarations Principles and procedures
- [4] UNI EN 15804:2012 + A2:2019, Sustainability from the constructions Statements environmental Product Key development rules for product category.
- [5] General Program Instructions of the International EPD® System. Version 5.0
- [6] PCR 2019:14 Construction products (EN 15804+A2) (2.0.1), developed from IVL Swedish Environmental Research Institute, EPD International Secretariat
- [7] c-PCR-020 Building hardware (EN 17610) (version 2024-04-30).
- [8] c-PCR007 Windows and Doors (EN 17213:2020) version 2024-04-30
- [9] EN 17610:2022 Building hardware Environmental product declarations Product category rules complementary to EN 15804 for building hardware
- [10] Eurostat Treatment of waste by waste category, hazardousness and waste management operations. Available at https://ec.europa.eu/eurostat/databrowser/product/view/env_wastrt?category=env.env_was.env_wasgt

VERSION HISTORY

original version of the EPD

